

INDIAN SCHOOL AL WADI AL KABIR

Class:	Unit test (2023-2024) ss: XII Sub: APPLIED MATHEMATICS (241) Max Marks: 2									as: 30				
Date: (e: 01.06.2023 Time: 1 hr.								•					
Gener	al In	struc	ctions:											
	1. This question paper is divided in to 4 sections- A, B, C and D.													
	2. Section A comprises of 7 questions of 1 mark each.													
	3. Section B comprises of 3 questions of 2 marks each.													
	4. Section C comprises of 3 questions of 3 marks each.													
	5. Section D comprises of 2 case study-based question.													
	6. Internal choice has been provided.													
SECTION A														
Q.1.	$If A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} then A + adjA = ____$									1				
	A	•	3	E		9	С		12	2		D	27	С
Q2.	For the binomial distribution $B(9, \frac{1}{3})$, standard deviation =									1				
	Α		3	В		1	С		2		D		1.41	D
Q3.	The derivative of x ^x with respect to x is									1				
	A	x^{x} ((1 + logx)	;) B		1 + logx	С		<i>x</i> ^{<i>x</i>}		D	x ^x logx		Α
Q4.	The slope of the tangent to the curve $= x^3 - 3x$ is equal to zero at									1				
	A (1, 2) and (2, 2) B (1, -2) and (-1, 2) C (3, 18) D		(-3, -18)	В										
Q5.	If X is a Poisson variable such that $P(X = 1) = 2 P(X = 2)$, then $P(X = 0)$ is									1				
	A		е	В		$\frac{1}{e}$	C		1		D		<i>e</i> ²	В
Q6.	If A	(3,4	(0, -4), B(0, -4)	4)and	l C(•	–1,0) the	n area	ι 0 j	$f \Delta AB$	C is	·	sq. u	nits.	1
	A		10	В		20	C		4 D		D	12	Α	

A) Both A and R are true and R is the correct explanation of A.B) Both A and R are true but R is not the correct explanation of A.C) A is true but R is false.D) A is false but R is true.Assertion (A): If A and B are symmetric matrices then AB – BA is a sk symmetric matrix.Reason (R): For a skew symmetric matrix A= $\begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} = 0$ if $i = j$.SECTION BQ8.Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR $If A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ $adjA = \begin{pmatrix} 4 & -2 & 2 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9.A stationery company manufactures 'x' units of pen in a given time, if of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC=$ ₹ 102.Q10.SECTION CQ11.		1						
C) A is true but R is false. D) A is false but R is true. Assertion (A): If A and B are symmetric matrices then AB – BA is a sk symmetric matrix. Reason (R): For a skew symmetric matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} = 0$ if $i = j$. SECTION B Q8. Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR $If A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ $adjA = \begin{pmatrix} 4 & -2 & 2 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9. A stationery company manufactures 'x' units of pen in a given time, if of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC= ₹ 102.$ Q10. Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C								
D) A is false but R is true. Assertion (A): If A and B are symmetric matrices then AB – BA is a sk symmetric matrix. Reason (R): For a skew symmetric matrix A= $\begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} = 0$ if $i = j$. SECTION B Q8. Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR $If A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ $adjA = \begin{pmatrix} -7 & 5 & -3 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9. A stationery company manufactures 'x' units of pen in a given time, if f of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC=$ ₹ 102. Q10. Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C								
Assertion (A): If A and B are symmetric matrices then AB – BA is a sk symmetric matrix. Reason (R): For a skew symmetric matrix A= $\begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} = 0$ if $i = j$.SECTION BQ8.Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR If $A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \end{pmatrix}$ $adjA = \begin{pmatrix} 4 & -2 & 2 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9.A stationery company manufactures 'x' units of pen in a given time, if of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ξ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC = \xi 102$.Q10.Q10.SECTION CSECTION C	C) A is true but R is false.							
symmetric matrix. Reason (R): For a skew symmetric matrix A= $\begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} = 0$ if $i = j$. SECTION B Q8. Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR $If A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ $adjA = \begin{pmatrix} 4 & -2 & 2 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9. A stationery company manufactures 'x' units of pen in a given time, if of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC= ₹ 102.$ Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C								
SECTION B Q8. Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR $If A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ $adjA = \begin{pmatrix} 4 & -2 & 2 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9. A stationery company manufactures 'x' units of pen in a given time, if i of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC=$ ₹ 102. Q10. Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C	V	В						
Q8. Solve for x and y using Cramer's rule: $3x - 4y = 0$ $2x - 3y = -1$. $\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $x = \frac{-4}{-1} = 4$ $y = \frac{-3}{-1} = 3$ OR $If A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$ $adjA = \begin{pmatrix} 4 & -2 & 2 \\ -7 & 5 & -3 \\ 1 & -1 & 1 \end{pmatrix}$ Q9. A stationery company manufactures 'x' units of pen in a given time, if for a material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC = ₹ 102.$ Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C	Reason (R): For a skew symmetric matrix $A = [a_{ij}], a_{ij} = 0$ if $i = j$.							
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$								
$\mathbf{Q9.} A \text{ stationery company manufactures 'x' units of pen in a given time, if roof raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) C(x)=x^2+2x+5000(ii) MC=₹102. \mathbf{Q10.} A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix} \mathbf{SECTION C}$	4	x0.5						
of raw material is square of the pens produced, cost of transportation is the number of pens produced and the property tax costs ₹ 5000. Then, (i) $C(x)=x^2+2x+5000$ (ii) $MC=$ ₹ 102. Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C		2						
(i) $C(x)=x^2+2x+5000$ (ii) $MC= \neq 102.$ Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C								
(ii) MC = ₹ 102. Q10. $A = \begin{pmatrix} 4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 1 \\ 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & -5 & -1 \\ 5 & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C		1						
$A = \begin{pmatrix} 8 & 0 & -3 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \end{pmatrix} + \begin{pmatrix} 5 & 0 & -\frac{1}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix}$ SECTION C		1						
SECTION C		1						
Tree works as a last d of words we with east works conserve for we the east		1						
Two numbers are selected at random without replacement from the set								
natural numbers 1, 2, 3, 4 and 5. If X denotes the greater number obtain $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2						
$E(\mathbf{x}) = 4$		1						

Q12.	If $x\sqrt{1+y} + y\sqrt{1=x} = 0$, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$						
	$x \sqrt{1+y} = -y \sqrt{1+x}$ Squaring both sides $(x\sqrt{1+y})^2 = (-y \sqrt{1+x})^2$ $x^2 (\sqrt{1+y})^2 = (-y)^2 (\sqrt{1+x})^2$ $x^2(1+y) = y^2 (1+x)$ $x^2 + x^2y = y^2 + y^2x$	$-(y - x) (x + y) = xy (y - x)$ $-(x + y) = xy$ $-x - y = xy$ $-x = xy + y$ $-x = (x + 1) y$ $y = \frac{-x}{x + 1}$	2				
	$\frac{dy}{dx} = \frac{\frac{d(-x)}{dx} (x+1) - \frac{d(x+1)}{dx} (-x)}{(x+1)^2}$ $\frac{dy}{dx} = \frac{-1 (x+1) + (1+0) x}{(x+1)^2}$ $\frac{dy}{dx} = \frac{-x - 1 + x}{(x+1)^2}$ $\frac{dy}{dx} = \frac{-1}{(x+1)^2}$	OR $2 \log x + 3 \log y = 5 \log(x + y)$ Now differentiating both sides with respect to x we get, $\frac{2}{x} + \frac{3}{y} \frac{dy}{dx} = \frac{5}{x + y} \left(1 + \frac{dy}{dx}\right)$ or, $\left(\frac{2}{x} - \frac{5}{x + y}\right) = \left(\frac{5}{x + y} - \frac{3}{y}\right) \frac{dy}{dx}$ or, $\left(\frac{2y - 3x}{x(x + y)}\right) = \left(\frac{2y - 3x}{y(x + y)}\right) \frac{dy}{dx}$ or, $\frac{dy}{dx} = \frac{y}{x}$. Proving Second derivative = 0 (Using product rule)	2				
Q13.	If the probability that an individual suffers a bad reaction from a injection of a given serum is 0.001. Mean = 2 Formula Poisson distribution function i) P(exactly 3 individuals will suffer from a bad reaction)= $\frac{e^{-2}2^3}{3!}$ =0.18 ii) P(more than 2 individuals will suffer from a bad reaction)= 1-[P(0) +P(1) +P(2)]=0.323						

	SECTION D Case study-based study questions							
Q14	In an election, a political group hired a public relation firm to promote their candidate in three ways: telephone, house calls and letters. The cost per contact is given as follows: Telephone ₹ 0.10, House call ₹ 1.00 and letter ₹ 2.00.If the number of contacts made in two cities X and Y are given below: $City$ TelephoneHouse callLetter XX10005005000Y3000100010,000							
	a) If A is a 2×3 matrix and B is a 3×1 , what is the order of matrix	1						
	 AB? 2 × 1 b) What is the total amount spent on telephone calls by the political group in both the cities together? =₹ 400 c) Using matrices find the total amount spent in each cities X and Y. 							
	$ \begin{pmatrix} 1000 & 500 & 5000 \\ 3000 & 1000 & 10000 \end{pmatrix} \begin{pmatrix} 0.1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 10600 \\ 21300 \end{pmatrix} $ OR	2						
	$A\begin{bmatrix}1 & -1\\2 & 1\end{bmatrix} = \begin{bmatrix}5 & 1\\6 & 3\end{bmatrix}. \qquad A = \begin{bmatrix}1 & 2\\0 & 3\end{bmatrix}$							
Q15	The test scores of a university entrance test appeared by 3000 students are normally distributed with mean 200 marks and standard deviation 20 marks. Based on the above information answer the following:	4						
	 a) Find the Z score of the mark 190. Z= -0.5 b) If Hari scored 180 marks what can you conclude about his performance 							
	 b) If Hari scored 180 marks what can you conclude about his performance compared to his batchmates? 15.87% better c) Find out the number of students expected to score above 220. 476 OR c) If 5% of the total students are qualified for the admission, find the 							
	minimum marks required to get the admission. 233 [Given: $P(Z < -1) = 0.1587 \& P(Z \le 1.65 = 0.95]$ ********							
